A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows

نویسندگان

  • Shravan K. Veerapaneni
  • Denis Gueyffier
  • George Biros
  • Denis Zorin
چکیده

We extend “A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D”, Veerapaneni et al. Journal of Computational Physics, 228(7), 2009 to the case of three dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived, a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction, and a novel numerical scheme for the evaluation of the 3D Stokes single-layer potential on an axisymmetric surface is necessary to speed up the calculations. By introducing these novel components, we obtain a time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme. To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and three vesicles with a background Poiseuille flow.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows

We extend “A fast algorithm for hydrodynamic interactions of inextensible vesicles in 2D”, Veerapaneni et al. Journal of Computational Physics, 228(7), 2009 to the case of three dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral approximation in space, semi-imp...

متن کامل

A fast algorithm for simulating vesicle flows in three dimensions

Vesicles are locally-inextensible fluid membranes that can sustain bending. In this paper, we extend “A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows”, Veerapaneni et al. Journal of Computational Physics, 228(19), 2009 to general non-axisymmetric vesicle flows in three dimensions. Although the main components of the algorithm are similar in ...

متن کامل

An immersed boundary method for simulating vesicle dynamics in three dimensions

We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows, [W.-F. Hu, Y. Kim, M.-C. Lai, An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows, J. Comput. Phys. 257 (2014)] to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric...

متن کامل

Evaluation of Roe s Method with Different Limiters in Supersonic 2-D and Axisymmetric Flows

2-D and axisymmetric Navier-Stokes equations are solved using Reiman-Roe solver with different limiters for second-order accurate schemes. The results were obtained for supersonic viscous flows over semi-infinite axisymmetric and 2-D bodies. The free stream Mach numbers were 7.78 and 16.34. The stability of Roe method with different limiters and entropy conditions were considered. The results s...

متن کامل

Evaluation of Roe s Method with Different Limiters in Supersonic 2-D and Axisymmetric Flows

2-D and axisymmetric Navier-Stokes equations are solved using Reiman-Roe solver with different limiters for second-order accurate schemes. The results were obtained for supersonic viscous flows over semi-infinite axisymmetric and 2-D bodies. The free stream Mach numbers were 7.78 and 16.34. The stability of Roe method with different limiters and entropy conditions were considered. The results s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009